New Publication: biodiversity of microorganisms within aerosols of the Amazon rainforest

It is well established that aerosols are relevant for the climate, for example, because they contribute to cloud formation. However, natural, biological aerosols emitted by plants serve another important purpose. They help disperse living microorganisms across the globe, affecting their distribution. Yet little is known about those bioaerosols emitted by pristine forests such as the Amazon. And even less about the diversity of the microorganisms in the aerosols.

Felipe Souza and co-authors now collected bioaerosols at our ATTO site. Then they extracted and analyzed the DNA to determine the communities present. This is the first study which described the community of microorganisms within aerosols in the Amazon. They found many different types of bacteria and fungi. Some were cosmopolitan taxa, but they also identified many that are specific to certain environments such as soil or water. This suggests that the atmosphere may act as an important gateway for bacteria to be exchanged between plants, soil, and water.

Their results also reveal that the main source for bioaerosols emitted from the Amazon rainforest are organisms that are known to disperse their spores through the atmosphere: fungi and bacteria. We know that these groups of organisms can produce enzymes and metabolites including antibiotics. Finding them in the vast jungle wilderness of the Amazon, however, is difficult. Analyzing forest aerosols may be a way to localize them for the potential use in biotechnological applications. 

Souza et al. published this paper as a Short Communication in Science of the Total Environment.

Dias‐Júnior et al. (2019) analysed prokaryotic diversity from DNA in the Amazon
Graphic Abstract from Souza et al. (2019)

Similar articles

The Amazon rain forest plays a major role in global hydrological cycling. Biogenic aerosols, such as pollen, fungi, and spores likely influence the formation of clouds and precipitation. However, there are many different types of bioaerosols. The particles vary considerably in size, morphology, mixing state, as well as behavior like hygroscopicity (how much particles attract water) and metabolic activity. Therefore, it is likely that not only the amount of bioaerosols affects the hydrological cycle, but also the types of aerosols present.

Sampling set-up for bioaerosols near the forest floor

Felipe Souza, Price Mathai and their co-authors published a new study analyzing the diverse bacterial population in the Amazonian atmosphere. The composition varied mainly with seasonal changes in temperature, relative humidity, and precipitation. On the other hand, they did not detect significant differences between the ground and canopy levels. They also identified bacterial species that participate in the nitrogen cycle.

GRAEGOR detector unit for measuring trace gases like nitrogen in the laboratory container. © Robbie Ramsay / University of Edinburgh

Ramsay et al. measured inorganic trace gases such as ammonia and nitric acid and aerosols in the dry season at ATTO. They are to serve as baseline values for their concentration and fluxes in the atmosphere and are a first step in deciphering exchange processes of inorganic trace gases between the Amazon rainforest and the atmosphere.

Smoke from biomass burning rises into the atmosphere over the central Amazon basin. © NASA

Soot and other aerosols from biomass burning can influence regional and global weather and climate. Lixia Liu and her colleagues studied how this affects the Amazon Basin during the dry season. While there are many different interactions between biomass burning aerosols and climate, they found that they overall lead to fewer and weaker rain events in the Amazon rainforest.

Graphical Abstract

In a new study, Dr. Haijie Tong and co-authors studied a subset of PM2.5, the so-called highly oxygenated molecules (HOMs) and its relationship with radical yield and aerosol oxidative potential. They analyzed fine particulate matter in the air in multiple locations. This including the highly polluted megacity Bejing and in the pristine rainforest at ATTO. They wanted to get insights into the chemical characteristic and evolutions of these HOM particles. In particular, they wanted to find out more about the potential of HOMs to form free radicals. These are highly reactive species with unpaired electrons.

Wu et al. collected and analyzed aerosols in two locations: the city of Manaus, a large urban area in Brazil, and the ATTO site in the heart of the forest. The aerosol compositions varied largly. At ATTO most aerosols were emitted by the forest itself, while in Manaus, anthropogenic aerosols were very common. The results were published in ACP.

Mira Pöhlker and her team continuously measured aerosols and their properties in the atmosphere at the 80 m tower at ATTO, thereby created the first such long-term record in the Amazon. They analyzed the data in two subsequent paper. The second was now published in ACP.

Moran-Zuloaga et al. analyzed the coarse fraction of aerosols every 5 minutes for over 3 years at ATTO. They found that the composition remains fairly constant throughout the year, except for a short period in the wet season when Saharan dust occurs regularly. They published their results in ACP.