Welcome

Welcome to our website for ATTO, the Amazon Tall Tower Observatory.

This research site is located in the middle of the Amazon rainforest in northern Brazil, about 150 km north of Manaus. It is run together by scientists from Germany and Brazil. Its aim is to continuously record meteorological, chemical and biological data, such as the concentration of greenhouses gases. With the help of these data, we hope to gain insights into how the Amazon interacts with the overlying atmosphere and the soil below. Because this region is of such importance to the global climate, it is vital to get a better understanding of these complex processes. Only then will we be able to make more accurate climate predictions.

Have a look around on our website to learn more about the research performed at ATTO and in labs and offices around the world. Please note that the website is still under constructions and more content will be added in the coming weeks. So be sure to check back soon! You can also follow us on Social Media to get an insight into the daily lives of the ATTO scientists and stay up-to-date on all the latest news and events!

New Publication: Air turbulence characteristics in and above the Amazon rainforest canopy

One of our major goals at ATTO is understanding how the Amazon rainforest interacts with the atmosphere above. This includes studying how the characteristics of the air change within and above the tree canopy in terms of atmospheric turbulence. The strength of the wind and the thickness of the canopy determine, among other things, how well the air can mix and to what degree gases from the atmosphere may reach the forest floor and vice versa.

In a new study, the scientists were looking into these processes at two Amazon sites, including ATTO. They found that the lowermost air-layer from the forest floor to about half the tree height is largely decoupled from the air in the upper part of the canopy and above. That is an important finding, as this process may limit the extent to which plant-emitted gases are transported out of the forest canopy into the atmosphere above.
Raoni Aquino and co-authors now published their findings in a new study called “Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy” in the journal Agricultural and Forest Meteorology, Volume 260-261.

New Publication: Variability of black and brown carbon concentrations

We are currently in the middle of the dry season in the central Amazon basin, where ATTO is located. This time of year is always characterized by lots of biomass burnings, both natural and anthropogenic. Fires produce aerosols, such as black and brown carbon. But the situation isn’t the same every year.

Our researchers studied the concentration of light-absorbing aerosol particles at ATTO over a 5-year period from 2012 to 2017. They found that the aerosol concentration increased significantly during the El Niño of 2015-2016. During that time, the dry season lasted longer than normal and forest and agricultural fires occurred much more frequently compared to other years. The fires produce large amounts of black and brown carbon. These are able to absorb radiation, which has two important effects: firstly, it warms the atmosphere, and secondly, less radiation is able to reach the canopy and forest floor, thus affecting the primary production of the forest. That means that a climatic shift to warmer and drier conditions and potentially stronger and more frequent El Niños could affect the Amazon rainforest in the future.

First-author Jorge Saturno just published the study in Atmospheric Chemistry and Physics (ACP) Issue 18. It is available Open Access and thus freely available for everyone.

New Publication: Aerosol composition and cloud dynamics

The properties and dynamics of clouds are strongly dependent on the types and amounts of aerosol particles in the atmosphere. They act as so-called cloud condensation nuclei as they initiate the formation of cloud droplets. Therefore, it is crucial to gain a sound understanding of the emission patterns, properties, and seasonal variability of aerosols in relation to the cloud life cycles. In order to achieve this goal, our aerosol group was able to record such data at ATTO. Over the course of a full year, they continuously measured aerosols and their properties in the atmosphere at the 80 m tower. Thus, they created the first such long-term record in the Amazon.

The results of the study were published in two parts; the first was released in 2016 and focused on the parameterization of the aerosol properties. This provides the scientific community with input for models to better predict atmospheric cycling and future climate. Because clouds are such a vital and highly complex component of the climate system, it is important for models to get them “right” in order to make reliable predictions.

In this newly published second part of the study, the authors focused on defining the most distinctive states of aerosol composition and associated cloud formation conditions in the ATTO region. They distinguished between four separate regimes that alternate throughout the year. For example, they discovered that the atmosphere is practically pristine during certain episodes in the wet season (from March to May), with no detectable influence of pollution. However, throughout the rest of the year, “foreign” aerosols arrive at the site in varying amounts. They include natural aerosol particles such as Saharan dust, but also pollutants such as smoke from biomass burning (wildfires and much more often deforestation fires) within the Amazon or even in Africa.

Part 1 and Part 2 of this study were published by first author Mira Pöhlker in Atmospheric Chemistry and Physics (ACP) Issues 16 and 18. They are available Open Access and thus freely available for everyone.

New publication: African volcanic emissions reach Amazon

One of the objectives of ATTO is to study the long-range transport of particles, such as sulfate, across the Atlantic to the Amazon rainforest and to better understand atmospheric cycling.

A good opportunity for that arose in 2014. Some of the most active volcanoes worldwide, the Nyamuragira and Mount Nyiragongo volcanoes in Congo in Central Africa, erupted violently. During this eruption, they emitted a lot of sulfur dioxide (SO2) into the atmosphere. This gas that is later converted to sulfate particles by oxidation. Usually, these particles are diluted in the atmosphere as they mix with other particles. It thus becomes difficult to distinguish them far away from their source. However, the emissions of 2014 were so strong that the sulfate particles originating from the volcanic gas were observed over the Amazon rainforest by ground-based instruments at our ATTO site (specifically at the 80 m tall triangular mast) and by aircraft measurements (during the ACRIDICON-CHUVA campaign). This observation is now being used by ATTO scientists as a case study to understand how gas and particle emissions from Africa are transported over the Atlantic Ocean and reach the Amazon Basin.

For scale, the volcanoes in Congo are almost 10,000 km away from ATTO, and it took the particles around 2 weeks to bridge that distance!

The full study was just published in Atmospheric Chemistry and Physics (ACP) Issue 18 by first author Jorge Saturno. It is available Open Access and thus freely available for everyone.

 

PhD positions available!

Come join ATTO! We currently have three open PhD positions within the research consortium:

If you want to join our international team and contribute to state-of-the-art Amazon research, please click the links above to find out more about the job offers and the application process.