New Publication: rainforest VOC emissions change in El Nino years

Pfannerstill et al. compared VOC emissions at ATTO between a normal year and one characterized by a strong El Nino with severe droughts in the Amazon. The did not find large differences, except in the time of day that the plants release the VOCs. They published their results in the journal Frontiers in Forest and Global Change.

New Publication: Comparing air pollution in Manaus and at ATTO by identifying aerosols

You have probably heard a lot about air pollution recently, be it because of the massive wildfires in California, smog in India or the diesel emission scandal in Germany. So let’s look into air pollution in the Amazon. Most air pollutants are actually aerosols. Identifying these aerosols and their chemical composition can help us understand where they come from and to what extent certain regions are affected by air pollutions. That is exactly what Li Wu and co-authors did in their new study in the Amazon rainforest.

They collected and analyzed aerosols in two locations: the city of Manaus, a large urban area in Brazil, and the ATTO site in the heart of the forest. The samples were collected during the wet season when ATTO is mainly influenced by air masses from the Atlantic and is located upwind from Manaus. And indeed they found that at ATTO the aerosols are mostly of organic origin, emitted by the forest itself. Additionally, they could identify mineral dust and sea-salt particles. In contrast, they frequently found soot, fly ash and particles containing heavy metals in the samples in Manaus. These are most likely produced by human activities. The good news is that such anthropogenic particles are still largely absent from the atmosphere over the rainforest, showing us that pristine wilderness regions do still exist. That is, at least during the wet season when the winds blow in the “right” direction.

The scientists published the study in Atmospheric Chemistry and Physics (ACP) and is available Open Access here.

Similar articles

The current query has no posts. Please make sure you have published items matching your query.

New Publication: Air turbulence characteristics in and above the Amazon rainforest canopy

Aquino et al. published a new study in Agricultural and Forest Meteorology about the characteristics of turbulence within the forest canopy at two Amazonian sites. They found that the air layer close to ground is largly decouples from the air layer in the upper canopy and above.

New Publication: Variability of black and brown carbon concentrations

We are currently in the middle of the dry season in the central Amazon basin, where ATTO is located. This time of year is always characterized by lots of biomass burnings, both natural and anthropogenic. Fires produce aerosols, such as black and brown carbon. But the situation isn’t the same every year.

First-author Jorge Saturno just published the study in Atmospheric Chemistry and Physics (ACP) Issue 18. It is available Open Access and thus freely available for everyone.

Similar articles

The current query has no posts. Please make sure you have published items matching your query.

New Publication: Aerosol composition and cloud dynamics

The properties and dynamics of clouds are strongly dependent on the types and amounts of aerosol particles in the atmosphere. They act as so-called cloud condensation nuclei as they initiate the formation of cloud droplets. Therefore, it is crucial to gain a sound understanding of the emission patterns, properties, and seasonal variability of aerosols in relation to the cloud life cycles. In order to achieve this goal, our aerosol group was able to record such data at ATTO. Over the course of a full year, they continuously measured aerosols and their properties in the atmosphere at the 80 m tower. Thus, they created the first such long-term record in the Amazon.

The results of the study were published in two parts; the first was released in 2016 and focused on the parameterization of the aerosol properties. This provides the scientific community with input for models to better predict atmospheric cycling and future climate. Because clouds are such a vital and highly complex component of the climate system, it is important for models to get them “right” in order to make reliable predictions.

In this newly published second part of the study, the authors focused on defining the most distinctive states of aerosol composition and associated cloud formation conditions in the ATTO region. They distinguished between four separate regimes that alternate throughout the year. For example, they discovered that the atmosphere is practically pristine during certain episodes in the wet season (from March to May), with no detectable influence of pollution. However, throughout the rest of the year, “foreign” aerosols arrive at the site in varying amounts. They include natural aerosol particles such as Saharan dust, but also pollutants such as smoke from biomass burning (wildfires and much more often deforestation fires) within the Amazon or even in Africa.

Part 1 and Part 2 of this study were published by first author Mira Pöhlker in Atmospheric Chemistry and Physics (ACP) Issues 16 and 18. They are available Open Access and thus freely available for everyone.

Similar articles

The current query has no posts. Please make sure you have published items matching your query.